Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes

نویسندگان

  • A. Cazzani
  • S. N. Atluri
چکیده

A family of new 4-noded membrane elements with drilling degrees of freedom and unsymmetric assumed stresses is presented; it is derived from a mixed variational principle originally formulated for finite strain analysis and already used in the literature to develop a purely kinematic membrane model. The performance of these elements, investigated through some well established benchmark problems, is found to be fairly good and their accuracy is comparable with that given by models with a larger number of nodal parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems

In this research, newly developed assumed stress hybrid elements are presented. The elements are applicable for geometrically as well as materially nonlinear problems with or without volume constraints. Variational principles using unsymmetric stresses and rotations are adopted as the basis of the formulations. The variational principles are modified through a regularization term, to eliminate ...

متن کامل

Finite Element Solutions of Two-dimensional Contact Problems Based on a Consistent Mixed Formulation

A consistent mixed finite element method for solving two-dimensional contact problems is presented. Derivations of stiffness equations for contact elements are made from a perturbed Lagrangian variational principle. For a contact element, both the displacement and pressure fields are independently assumed. In order to achieve a consisent formulation, thus avoiding any numerical instability, the...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

New DKFT Elements for the Finite Element Analysis of Thin Viscoelastic Plates

  In this paper, finite element analysis of thin viscoelastic plates is performed by proposing new plate elements using complex Fourier shape functions. New discrete Kirchhoff Fourier Theory (DKFT) plate elements are constructed by the enrichment of quadratic function fields in a six-noded triangular plate element with complex Fourier radial basis functions. In order to illustrate the validity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004